Nonlinear dynamic modeling of Lepidopteron mechanosensors The Trimmer Lab is interested in the control of locomotion and other movements in soft bodied animals. Michael A. Simon has been working there analyzing the activity of a specific mechanosensor trying to understand how it influences abdominal movement, a critical question for animals with no rigid components. One particularly powerful analytical tool for analyzing such sensors is nonlinear analysis using Gaussian white noise as a stimulus. One challenge of this technique, however, is that it is computationally complex. Even storing the matrices involved in these computations is beyond the capabilities of the typical personal computer. The Tufts Linux Research Cluster offers him the resources necessary to run these computations and analyze the results without needing to invest in new, complicated, or expensive analytical hardware or software. It also allows him to use software that would have been difficult to acquire for their lab, alone. Without this resource, following this line of inquiry would have proved a costly endeavor, possibly prohibitively so. They hope to apply their results to the development of computer and robotic models, with the eventual goal of designing a soft robot, a groundbreaking engineering application with substantial implications for design in the biomedical engineering arena, as well as in other areas of engineering.
The Tufts High Performance Compute (HPC) cluster delivers 35,845,920 cpu hours and 59,427,840 gpu hours of free compute time per year to the user community.
Teraflops: 60+ (60+ trillion floating point operations per second) cpu: 4000 cores gpu: 6784 cores Interconnect: 40GB low latency ethernet
For additional information, please contact Research Technology Services at tts-research@tufts.edu
General
Content
Integrations