...
Insert excerpt | ||||
---|---|---|---|---|
|
Luis Dorfmann
Evaluating patient-specific Abdominal Aortic Aneurysm wall stress based on flow-induced loading
In this research we develop a physiologic wall stress analysis procedure by incorporating experimentally measured, non-uniform pressure loading in a patient-based finite element simulation. First, the distribution of wall pressure is measured in a patient-based lumen cast at a series of physiologically relevant steady flow rates. Then, using published equi-biaxial stress-deformation data from aneurysmal tissue samples, a nonlinear hyperelastic constitutive equation is used to describe the mechanical behavior of the aneurysm wall. The model accounts of the characteristic exponential stiffening due to the rapid engagement of nearly inextensible collagen fibers and assumes, as a first approximation, an isotropic behavior of the arterial wall. The results show a complex wall stress distribution with a localized maximum principal stress value of 660 kPa on the inner surface of the posterior surface of the aneurysm bulge, a considerably larger value than has generally been reported in calculations of wall stress under the assumption of uniform loading. This is potentially significant since the posterior wall has been suggested as a common site of rupture, and the aneurysmal tensile strength reported by other authors is of the same order of magnitude as the maximum stress value found here. The numerical simulations performed in this research required substantial computational resources and data storage facilities, which were very generously made available by Tufts University. This support is gratefully acknowledged.
Insert excerpt | ||||
---|---|---|---|---|
|
Rachel Lomasky and Carla Brodley
...