...
Insert excerpt | ||||
---|---|---|---|---|
|
Andrew Margules
The research that I am currently conducting is in the area of Passively Actuated Deformable Airfoils. The largest presence of airfoils today is contained within the aerospace and transportation industries. Like those on commercial and military aircraft, the basic teardrop airfoil shape is augmented with a series external structures which aid in take-off, landing, and cruising flight. While they perform specific and important functions, they add additional weight to a system which is highly immersed in weight management. What my research is looking into, is try find a way to develop an internal structure for an airfoil that would provide similar shape change, without the added external mechanisms. To do this, I am using two different computational software packages. COMSOL Multiphysics allows for the examination of the fluid-structure interaction of the airfoil and moving air. Using different internal rib structures, a goal of finding an appropriate structure is hoped to be achieved. In addition, I am using the computational fluid dynamics package Fluent to help visualize velocity and pressure fields over deformed and undeformed airfoil shapes. If this software was not available through the academic research cluster, this research would extremely slow process. The governing physics behind these simulations is complex enough that without the computing power of the cluster, I do not believe that we would be able to perform it. In the last twenty or so years, a focus has shifted from passive actuation to active actuation. Hopefully, this research will help to launch a renewed interested in this field.
Insert excerpt | ||||
---|---|---|---|---|
|
Ke Betty Li
I am a researcher in the Department of Civil and Environmental Engineering. Our research focuses on the investigation of how various contaminants affect the ground water quality and how we could design remediation systems. An important approach we are using for this type of investigation is modeling contaminant fate and transport in the subsurface on computers. The resources provided by Tufts Cluster Center are very important to us. Our simulations usually take days or even weeks on a single CPU. The clusters can either expedite each simulation if we use simulators that enable parallel computing, or allow us to simulate multiple serial processes simultaneously. The significant improvement in computing efficiency is critical for us to commit work quality to funding sponsors. We expect that our work will improve the cuurent understanding of contamination in the subsurface, provide cutting-edge assessment tools, and stimulate innovative treatment technologies.
...