Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Insert excerpt
Eugene Morgan
Eugene Morgan

Eric Thompson

We have used the Tufts Linux Cluster to further our understanding of the seismic response of near-surface soils. This behavior, often termed "site response," can often explain why locations heavily damaged by an earthquake are frequently observed adjacent to undamaged locations. Standard modeling procedures often fail to accurately model this behavior. The failure of these models is often attributed to the uncertainty of the soil properties. However, using the Tufts Linux Cluster we have shown that the underlying theoretical assumptions of the standard model (vertically incident plane SH-wave propagation through a laterally constant medium) are responsible for the failure to match the observed site response behavior.

Insert excerpt
Eric Thompson
Eric Thompson

Andrew Margules

The research that I am currently conducting is in the area of Passively Actuated Deformable Airfoils. The largest presence of airfoils today is contained within the aerospace and transportation industries. Like those on commercial and military aircraft, the basic teardrop airfoil shape is augmented with a series external structures which aid in take-off, landing, and cruising flight. While they perform specific and important functions, they add additional weight to a system which is highly immersed in weight management. What my research is looking into, is try find a way to develop an internal structure for an airfoil that would provide similar shape change, without the added external mechanisms. To do this, I am using two different computational software packages. COMSOL Multiphysics allows for the examination of the fluid-structure interaction of the airfoil and moving air. Using different internal rib structures, a goal of finding an appropriate structure is hoped to be achieved. In addition, I am using the computational fluid dynamics package Fluent to help visualize velocity and pressure fields over deformed and undeformed airfoil shapes. If this software was not available through the academic research cluster, this research would extremely slow process. The governing physics behind these simulations is complex enough that without the computing power of the cluster, I do not believe that we would be able to perform it. In the last twenty or so years, a focus has shifted from passive actuation to active actuation. Hopefully, this research will help to launch a renewed interested in this field.

...