...
The Trimmer Lab is interested in the control of locomotion and other movements in soft bodied animals. I have been analyzing the activity of a specific mechanosensor trying to understand how it influences abdominal movement, a critical question for animals with no rigid components. One particularly powerful analytical tool for analyzing such sensors is nonlinear analysis using Gaussian white noise as a stimulus. One challenge of this technique, however, is that it is computationally complex. Even storing the matrices involved in these computations is beyond the capabilities of the typical personal computer. The Tufts Linux Research Cluster offers me the resources necessary to run these computations and analyze the results without needing to invest in new, complicated, or expensive analytical hardware or software. It also allows me to use software that would have been difficult to acquire for our lab, alone. Without this resource, following this line of inquiry would have proved a costly endeavor, possibly prohibitively so. We hope to apply our results to the development of computer and robotic models, with the eventual goal of designing a soft robot, a groundbreaking engineering application with substantial implications for design in the biomedical engineering arena, as well as in other areas of engineering.
Nonlinear dynamic modeling of Lepidopteron mechanosensors
Katherine L. Tucker
Use of the Bioinformatics cluster has been invaluable to our research. We use a genetic analysis software named SOLAR which is Linux/Unix based. This software and the methods used in it are cutting edge. We are able to perform varous genetic computations with ease. In the past some student have had to do these calculations by hand because of a lack of access to such software. However, hand calculations are only possible for small sample sizes and simple genetic analysis. Our current work with Solar includes over 5,000 individuals and we are using some of the most advanced methods available. The cluster allows us to do large computational runs that would not be otherwise possible. Thus, our current work would not have been able without access to SOLAR on the bioinformatics cluster. In addition, this type of analysis is being more common and will be a greater part of our efforts in future years. Use of the bioinformatics cluster helps our research to remain competitive and important in our grant application process. Our lab is the first to use SOLAR on the bioinformatics cluster, however, since we have been using it, many labs have inquired about how to gain access. I sincerely thank you for your work in helping us gain access to the software and the service you have provided through the Bioinformatics cluster.
...